Pt-Co Bimetallic Catalyst Supported on Single-Walled Carbon Nanotubes: Effect of Alloy Formation and Oxygen Containing Groups†

نویسندگان

  • Xiaoming Wang
  • Nan Li
  • Lisa D. Pfefferle
  • Gary L. Haller
چکیده

Pt monometallic and Pt-Co bimetallic catalysts have been prepared on single-walled carbon nanotubes (SWNT) with and without HNO3 treatment. The HNO3 treatment introduced oxygen containing groups (OCGs), which affect both the structure and activity of the catalyst. The introduction of OCGs does not affect the structure of Pt monometallic catalysts but increased the dispersion in the bimetallic catalysts. The aqueous phase reforming (APR) activity of the bimetallic catalysts is also affected by the OCGs, because the local concentration of the reactant around the SWNT support with OCGs is less than the case without OCGs. The two effects act on activity in opposing directions so the bimetallic catalysts on the two supports give similar APR yields, but this discovery gives us direction and a basis for the future design and improvement of SWNT supported catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst.

Chirality-controlled synthesis of single-walled carbon nanotubes (SWCNTs) is a prerequisite for their practical applications in electronic and optoelectronic devices. We report here a novel bimetallic CoPt catalyst for the selective growth of high quality SWCNTs with a narrow chirality distribution at relatively high temperatures of 800 °C and 850 °C using atmospheric pressure alcohol chemical ...

متن کامل

Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation

Carbon nanotubes have been proposed as advanced metal catalyst support for electrocatalysis. In this work, different carbon support materials including single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and XC-72 carbon black, were compared in terms of their electrochemical properties using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The ...

متن کامل

Synthesis and Characterization of Carbon Nanotubes Catalyzed by TiO2 Supported Ni, Co and Ni-Co Nanoparticles via CCVD

Monometallic and bimetallic Ni and Co catalytic nanoparticles supported on Titanium dioxide (rutile phase) substrate were prepared by wet impregnation method. These nanoparicles were used as catalysts for synthesis of multiwalled carbon nanotubes (MWCNTs) from acetylene decomposition at 700°C by the catalytic chemical vapor deposition (CCVD) technique. The nanomaterials (catalyst and CNTs) were...

متن کامل

Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED) of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD) and scanning transmission electron ...

متن کامل

An Abiotically Catalyzed Glucose Fuel Cell Based on Decorated Buckypaper

Highly efficient supported catalyst layers based on metallic/bimetallic (Pt, Au-Pt) nanoparticles decorated-single walled carbon nanotubes (SWNT) on Buckypaper (BP) for direct glucose fuel cell are presented here. The electrodes have been tested in mixed-reactant biofuel cell. High glucose-tolerance, stability and catalytic activity are observed for the oxygen reduction reaction (ORR) that resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010